Synthesis and reactivity of Pt^{II} complexes containing the orthometallated ligand $[C_6H_4-2-PPh_2C(H)COCH_2PPh_3]$

Carmen Larraz, Rafael Navarro* and Esteban P. Urriolabeitia

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza—Consejo Superior de Investigaciones Científicas, E-50009 Zaragoza, Spain. E-mail: rafanava@posta.unizar.es, esteban@posta.unizar.es; http://lrfl.unizar.es/~navarro/c_Rafa.html

Received (in Montpellier, France) 7th April 2000, Accepted 12th May 2000 Published on the Web 7th July 2000

The reaction of PtCl₂(NCPh), with the ylide [Ph₃P=C(H)COCH₂PPh₃]ClO₄ (1:1 molar ratio, refluxing CHCl₃) affords trans-[PtCl₂(NCPh){C(H)PPh₃C(O)CH₂PPh₃}]ClO₄ 1. However, the reaction of PtCl₂ (CH₂Cl₂, r.t.) or PtCl₂(NCMe)₂ (2-methoxyethanol, reflux) with the ylide [Ph₃P=C(H)COCH₂PPh₃]ClO₄ (1:1 molar ratio) affords the orthometallated $[Pt\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}(\mu-Cl)]_2(ClO_4)_2$, **2**, as a mixture of diastereoisomers **2a–d**. Treatment of $\mathbf{2}$ with PPh₃ (1: 2 molar ratio) affords [PtCl $\{C_6H_4$ -2-PPh₂ $\mathcal{C}(H)COCH_2PPh_3\}(PPh_3)](ClO_4)$, $\mathbf{3}$, as a single geometric isomer. The reaction of 2 with AgClO₄ (1: 2 molar ratio) in NCMe gives the solvato complex $[Pt{C_6H_4-2-PPh_2C(H)COCH_2PPh_3}(NCMe)_2](ClO_4)_2$, 4, while the reaction of 2 with Tl(acac) (1 : 2 molar ratio) gives $[Pt\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}(acac)](ClO_4)$, 5. The dicationic complexes $[Pt\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}(acac)](ClO_4)$, 5. $PPh_2C(H)COCH_2PPh_3\}(dppe)](ClO_4)_2$, 6, and $[Pt\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}(phen)](ClO_4)_2$, 7, can be obtained by reaction of 2 with AgClO₄ followed by addition of the appropriate ligand (1:2:2 molar ratio). The reaction of 6 with NaH gives [Pt{C₆H₄-2-PPh₂C(H)COCH=PPh₃}(dppe)](ClO₄), 8, while the reaction of 4 with PPh₃ and NaH gives $[Pt\{C_6H_4-2-PPh_2C(H)COCH=PPh_3\}(PPh_3)_2](ClO_4)$, 9. Complexes 8 and 9, which contain a "free ylide" functionality, react with ClAu(tht) to give $[Pt\{C_6H_4-2-PPh_2C(H)COCH(AuCl)PPh_3\}(dppe)](ClO_4)$, 10, and [Pt{C₆H₄-2-PPh₂C(H)COCH(AuCl)PPh₃}(PPh₃),](ClO₄), 11. In the heterobimetallic complexes 10 and 11 the ylide ligand acts as a C,C,C-terdentate ligand and, in spite of the presence of two chiral centers, only one diastereoisomer (as the mixture of two enantiomers) is observed. All complexes were characterized on the basis of their spectroscopical and analytical parameters.

One of our main current resarch subjects is the coordination chemistry of PdII and PtII with \alpha-stabilized phosphoylides.1 Amongst them, the neutral bis-ylide [C(H)=PPh₃]₂CO has shown a notable reactivity, not only in PdII derivatives²⁻⁵ but also in gold and silver complexes, as it has been reported by other research groups.⁶ One of the most interesting reactions of this bis-ylide is its intramolecular rearrangement from the C,C-chelating form [C(H)PPh₃]₂CO to the C,C-orthometallated form $[C_6H_4-2-PPh_2C(H)COCH_2PPh_3]$, which can be induced through a variety of methods. This rearrangement occurs through a C-H bond activation process in one Ph group of a PPh3 fragment, followed by an acid-base intramolecular reaction.3 PtII complexes have been employed frequently to promote C-H bond activation,7 and interest in cycloplatination reactions is growing continuously (as evidenced by the number of contributions that have appeared in this field⁸⁻²⁰), because of their practical importance.²¹ On the other hand, although the orthometallation of ylide ligands is a known reaction, not only for the platinum group metals²²⁻²⁹ but also in early transition metals such as Nb,30 the subsequent reactivity of the orthometallated ylide ligands has been rarely reported.4,5,24

Due to our interest in C–H bond activation processes and in orthometallated systems derived from ylide groups, we have decided to explore the reactivity of some simple complexes of Pt^{II} such as $PtCl_2$ or $PtCl_2(NCR)_2$ (R = Me, Ph) towards the phosphonium ylide salt $[Ph_3P=C(H)C(O)CH_2PPh_3]ClO_4$. In the case of the nitrile complexes one should expect, at a first glance, a simple displacement of the coordinated nitrile by the incoming ylide, but it has been previously reported that the reactions of $PtCl_2(NCR)_2$ (R = Me, Ph, C_6F_5) with stabilized

ylides are actually more complicated, giving different types of C–C bond coupling products, $^{31-33}$ resulting from the nucleophilic attack of the C_{α} of the ylide on the nitrilic carbon. Thus, several reactivity patterns should be considered in this kind of reaction.

In this paper, we report different synthetic methods to achieve the orthometallation of the phosphonium ylide [Ph₃P=C(H)C(O)CH₂PPh₃]ClO₄ promoted by Pt^{II} complexes. Interestingly, the reactions of the nitrile precursors PtCl₂(NCPh)₂ and PtCl₂(NCMe)₂ with the aforementioned phosphonium ylide proceed without attack over the coordinated nitriles and, in some cases, afford the orthometallated derivatives under very mild conditions (CH₂Cl₂, r.t.). We have also studied the reactivity of the C,C-orthometallated derivatives $[Pt\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}L_n]^{n+}$ too deprotonating reagents, which results in the thesis of "free-ylide"-containing complexes $[Pt\{C_6H_4-2 PPh_2C(H)COCH=PPh_3 L_n I^{(n-1)+}$ and their subsequent reactivity towards electrophilic reagents, such as ClAu(tht) (tht = tetrahydrothiophene), to afford the heterobimetallic species $[Pt\{C_6H_4-2-PPh_2C(H)COCH(AuCl)PPh_3\}L_n]^{(n-1)+}$ in which the orthometallated ylide group acts as a C,C,C-terdentate ligand.

Results and discussion

Reactivity of PtCl₂(NCR)₂ and PtCl₂ with [Ph₃P=C(H)C(O)CH₂PPh₃]ClO₄

The reaction of $PtCl_2(NCPh)_2$ with $[Ph_3P=C(H) C(O)CH_2PPh_3]ClO_4$ (1:1 molar ratio, $CHCl_3$, reflux, 5 h) results in the formation of $trans-[PtCl_2(NCPh)-\{C(H)PPh_3-(NCPh)-\{C(H)PPh_3-(NCPh)-\{C(H)PPh_3-(NCPh)-(N$

DOI: 10.1039/b002848g New J. Chem., 2000, **24**, 623–630 **623**

C(O)- CH_2PPh_3] ClO_4 , 1, eqn. (1), according to its analytical and spectroscopic data (see Experimental). The reaction occurs by simple displacement of only one coordinated nitrile and its substitution by the ylide, which coordinates through the ylidic C atom. This result contrasts with related reports of the reactivity of Pt^{II} -nitrile complexes with α -keto-stabilized ylides $R_3P=C(H)CO_2R$, which result in the attack of C_α on the coordinated nitrile. α 1 The difference in the observed reactivity could be related to the different basicity associated with the ylidic carbon.

The stretching v(CO) band appears at 1654 cm⁻¹ in the IR spectrum, clearly shifted to higher frequencies with respect to the starting ylide $(1590 \text{ cm}^{-1})^6$ and suggesting its Ccoordination. The Cl-trans-to-Cl geometry of 1 can be inferred from the observation of only one Pt-Cl absorption (309 cm⁻¹), and the presence of coordinated NCPh from the absorption located at 2300 cm⁻¹. The ¹H NMR spectrum shows the resonance attributed to the ylidic CH proton at 6.22 ppm, as a broad singlet, and flanked by ¹⁹⁵Pt satellites. The value of the coupling constant $^2J_{\text{Pt-H}} = 117$ Hz is in good agreement with previously reported values for PtII C-bonded ylides. 26,34 This spectrum shows also the presence of the AB part of an ABX spin system, attributed to the methylene protons of the -CH₂PPh₃ group (see Experimental). In addition, the ³¹P{¹H} NMR spectrum shows the two chemically inequivalent P atoms as two doublets (${}^{4}J_{P-P}=10$ Hz), one of them showing ¹⁹⁵Pt satellites ($^2J_{\text{Pt-P}} = 76$ Hz), and the ¹³C{¹H} NMR spectrum confirms the C-bonding of the ylide [Ph₃PC(H)C(O)CH₂PPh₃]ClO₄ since the ylidic carbon appears at 21.52 ppm as a doublet of doublets, although due to the low intensity of the resonance we were unable to find the corresponding platinum satellites. The presence of coordinated NCPh was also evident from the ¹³C{¹H} NMR spectrum since the nitrilic carbon appears at 114.99 ppm, typical for coordinated nitriles.35

Complex 1 has the ylide [Ph₃PC(H)C(O)CH₂PPh₃]ClO₄ selectively coordinated through the ylidic carbon. This result contrasts with those obtained in PdII complexes, in which we were unable to obtain this coordination mode.2 As far as we know, only one example of this bonding mode has been gold(I) derivative [AuCl{CH(PPh₃)-COCH₂PPh₃}]ClO₄.6 Owing to the presence of the phosphonium moiety in 1, and due to our recent experience in the deprotonation of related systems,4,5 we have performed several reactions in order to obtain PtII derivatives with the C,C-chelating ligand [C(H)PPh3]2CO, which should arise from direct deprotonation of 1 and simultaneous abstraction of one chloride ligand. However, the reactivity of 1 towards deprotonating reagents such as NaH (1:1 molar ratio, THF, r.t.), NBu₄OH (1:1 molar ratio, MeOH, r.t.), Tlacac (1:1 or 1: 2 molar ratio, CHCl₃, r.t. or reflux) or (acac)AuPPh₃ (1:1 molar ratio, CH₂Cl₂, r.t.) only gave intractable mixtures of several products, which were not analyzed further.

Other reactions were performed in order to obtain complexes related to 1 with the ylide C-bonded. However, PtCl₂(NCMe)₂ does not react with [Ph₃P=C(H)-C(O)CH₂PPh₃]ClO₄ under the same conditions (1:1 molar ratio, CHCl₃, reflux, 5 h) and the starting materials were recovered. Probably, the different lability of the two nitrile ligands accounts for this different reactivity. Moreover, PtCl₂ reacts with [Ph₃P=C(H)C(O)CH₂PPh₃]ClO₄ (1:1 molar ratio, CH₂Cl₂, r.t., 4 days) but gives a very different complex. At the end of the reaction time, the PtCl₂ is almost completely

$$PtCl_{2}(NCPh)_{2} \frac{[Ph_{3}P=C(H)COCH_{2}PPh_{3}]CIO_{4}}{CHCl_{3} / reflux / 5 h} \left[PhCN - Pt - C - O - CIO_{4} - PPh_{3} - CIO_{4} - PPh_{4} - CIO_{4} - PPh_{5} - CIO_{5} - PPH_{5$$

dissolved. After filtration, removal of the solvent and $\rm Et_2O$ addition, the mixture of the orthometallated complexes 2a-d is obtained as a cream solid [see eqn. (2) (top)]. The presence of four isomers can be inferred from the NMR spectra (see below and Experimental) but two of the isomers, 2a and 2b, are always present in higher amounts than the other two, 2c and 2d.

The mild conditions employed in the cycloplatination of the phosphonium ylide [Ph₃P=C(H)C(O)CH₂PPh₃]ClO₄ contrast with the previous reports of orthometallation of stabilized ylides. Thus, the ylide Ph₃P=C(H)COMe is orthometallated by reaction with PtCl₂ in refluxing NCMe for 44 h, 22 while the complex trans-PtCl₂{C(H)PPh₃C(O)Me}₂ evolves in refluxing THF (8 h) or refluxing NCMe (44 h), resulting in the formation of {PtCl₂[CH(COCH₃)PPh₂(o-C₆H₄)]-[Ph₃PCH₂COCH₃]}. However, the authors also reported that the latter transformation can also be performed in CH₂Cl₂ at room temperature for several days. 26

In order to shed light on the kinetic or thermodynamic nature of the different pairs of isomers 2a, b and 2c, d obtained and since the orthometallation of the ylides is usually promoted at high temperatures, we refluxed equimolar amounts of $PtCl_2(NCMe)_2$ and $[Ph_3P=C(H)C(O)CH_2PPh_3]ClO_4$ in different solvents. The best results were obtained in 2-methoxyethanol, a solvent that has been employed in the orthometallation of bulky tertiary phosphines.³⁶ The reaction of $[Ph_3P=C(H)C(O)CH_2PPh_3]ClO_4$ in 2-methoxyethanol [1:1]molar ratio, reflux, 5 h, see eqn. (2) (bottom) results in the almost exclusive formation of the isomers 2c, d according to the NMR data. Thus, it seems that the isomers obtained at room temperature, 2a, b, are the kinetic isomers and those obtained at higher temperatures, 2c, d, are the thermodynamic isomers. Additional proof comes from the observation that a mixture of 2a, b subjected to prolonged heating in 2methoxyethanol evolves to a mixture of 2c, d.

The mixture of complexes 2a-d has elemental analysis and mass spectrum in accordace with the stoichiometry $[Pt(Cl)(C_6H_4PPh_2C(H)COCH_2PPh_3)]_2(ClO_4)_2$ (see Experimental). Moreover, its IR spectrum shows the carbonyl stretch at $1652~\rm cm^{-1}$ and the absorptions corresponding to the Pt–Cl stretch at $283~\rm cm^{-1}$, shifted to lower energies when compared with 1, suggesting the presence of bridging halide ligands.

The characterization of complexes $2\mathbf{a}$ — \mathbf{d} as a mixture of diastereoisomers containing the orthometallated $[C_6H_4$ -2-PPh₂C(H)COCH₂PPh₃] ligand has been made on the basis of their NMR data. The 1 H NMR spectrum of $2\mathbf{a}$ — \mathbf{d} shows the presence of four different resonances attributed to the ylidic Pt–CH protons and four AB parts of ABX spin systems, attributed to the methylene protons of the –CH₂PPh₃ groups (X = 31 P nucleus). The 31 P{ 1 H} NMR of $2\mathbf{a}$ — \mathbf{d} shows also the presence of four sets of AX spin systems: the part A of the resonances appears centered around 20 ppm (–CH₂PPh₃) and the part X appears spread from 24 to 30 ppm (PPh₂). The 13 C{ 1 H} NMR spectrum provides fundamental evidence for the presence of the orthometallated C,C-chelating ligand $[C_6H_4$ -2-PPh₂C(H)COCH₂PPh₃]. Thus, the APT spectrum (attached proton test) shows negative doublet resonances in

$$\begin{array}{c} \text{PtCl}_2 & \frac{[\text{Ph}_3\text{P=C(H)COCH}_2\text{PPh}_3]\text{CIO}_4}{\text{CH}_2\text{CI}_2 / \text{r. t. } / 4 \text{ days}} \\ \text{PtCl}_2 & \frac{[\text{Ph}_3\text{P=C(H)COCH}_2\text{PPh}_3]\text{CIO}_4}{2\text{-MeOCH}_2\text{CH}_2\text{OH } / \text{reflux } / 5 \text{ h}} \\ \end{array} \begin{array}{c} \text{Pt}_2 \\ \text{Pp}_2 \\ \text{Pp}_3 \\ \text{2a-d} \\ \text{syn } (RR/SS) \\ \text{syn } (RR/SS) \\ \text{syn } (RS/SR) \\ \end{array} \right) \textbf{2a, 2b} \\ \\ \begin{array}{c} \text{anti } (RR/SS) \\ \text{anti } (RS/SR) \\ \text{anti } (RS/SR) \\ \text{2c, 2d} \\ \text{anti } (RS/SR) \\ \text{2c, 2d} \\ \end{array}$$

the range 135–144 ppm, the typical region for the appearance of the orthometallated C_1 carbon atom {the reported value for $[Pt(\mu-Cl)CH_3COCHP(C_6H_4)(C_6H_5)_2]_2 \cdot 2 \ CDCl_3$ is 136.9 ppm).²²

Once the orthometallated dinuclear nature of complexes 2 is established, the explanation of the presence of four different isomers could be explained by assuming that we have two arrangements of the [Pt(Cl)(C₆H₄PPh₂-C(H)COCH₂PPh₃)] fragments: syn and anti. In turn, the syn isomer possess two chiral centers (the two ylidic carbon atoms bonded to the Pt center) and thus we have again two possibilities: syn (RR/SS) and syn (RS/SR), which appear as two different products. In the same way, we could have anti (RR/SS) and anti (RS/SR) thus giving four different diastereoisomers, each as the racemic mixture of two enantiomers. The assignment of the anti isomers to the products 2c, d has been made by similarity of the chemical shifts, and of the shape of the resonances of the ¹H NMR spectrum of the mixture, with those observed in the corresponding Pd^{II} complex³ [Pd(μ-Cl) $\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}$]₂(ClO₄)₂, which proved to be the anti isomers.⁴ Thus, the compounds 2a, b have been assigned to the syn isomers.

With respect to the mechanism of the orthometallation, we have some evidence to believe that the reaction in CH_2Cl_2 occurs in a similar way to that described²⁶ for the cycloplatination of $[PtCl_2\{C(H)PPh_3C(O)Me\}_2]$. In this report, the intramolecular metallation seems to be promoted by the presence of traces of HCl and it is completely inhibited in the presence of K_2CO_3 . In the same way, we have performed the reaction of $PtCl_2$ with equimolar amounts of $[Ph_3P2C(H)C(O)CH_2PPh_3]ClO_4$ in CH_2Cl_2 and in THF, in the presence or absence of Na_2CO_3 , and we have observed cycloplatination only in the reaction carried out in CH_2Cl_2 in the absence of Na_2CO_3 (all reactions at room temperature). We have not performed experiments in order to ascertain which mechanism operates in the thermal orthometallation in 2-methoxyethanol.

Reactivity of the cycloplatinated derivatives 2a-d

Obviously, the reactivity of the four isomers in cleavage reactions of the chloride bridging system is the same. The reaction of 2a-d (different molar ratios a : b : c : d) with PPh₃ (1:2) ratio) gives $[Pt(Cl)\{C_6H_4-2-PPh_2C(H)COCH_2-$ PPh₃\(PPh₃\)\(\text{ClO}_4\), 3, as a single isomer and in good yields (see Scheme 1). When the reaction is monitored by ${}^{31}P\{{}^{1}H\}$ NMR (CD₂Cl₂, r.t.) the spectroscopic yield of 3 is 100%, and we have not detected unreacted 2 in the solution, nor other isomers of 3. Complex 3 was obtained, in preparative scale, after evaporation of the solvent to dryness and addition of MeOH or Et₂O as a white solid. Its elemental analysis and mass spectrum are in good agreement with the proposed stoichiometry. The IR spectrum of 3 shows the carbonyl absorption at 1643 cm⁻¹ and the Pt-Cl stretch at 283 cm⁻¹, typical for a terminal chloride trans to a carbon atom.²⁶ Further characterization of 3 comes from the analysis of its NMR data. The ¹H NMR spectrum shows only one set of resonances, suggesting the presence of a single geometric isomer. The ylidic CH proton appears at 4.84 ppm as a doublet of doublets of doublets, due to its coupling with three different P atoms, and suggesting that the PPh₃ ligand is trans to the ylidic carbon, as it has been observed in its Pd homolog. The methylenic CH₂P protons appear at 4.95 and 5.73 ppm, as the AB part of an ABX spin system $(X = {}^{31}P)$. The ${}^{31}P\{{}^{1}H\}$ NMR spectrum of 3 shows the presence of only one set of three resonances, corresponding to the three chemically inequivalent P nuclei of the molecule. The coordinated PPh, appears at 24.10 ppm as a doublet with 195Pt satellites $(^{1}J_{\text{Pt-P}} = 3623 \text{ Hz})$, the P atom in the cycloplatinated ring appears at 21.90 ppm as a doublet of doublets with unresolved

¹⁹⁵Pt satellites (a broadening of the base of the signal) and the phosphonium group appears at 20.17 ppm as a doublet.

The synthesis of 3 as a single isomer resembles that of the $\lceil Pd(Cl) \rceil C_6H_4-2-PPh_2C(H)$ derivative COCH₂PPh₃}(PPh₃)](ClO₄).³ In the Pd(II) complex, this selectivity was explained taking into account the antisymbiotic behavior of the soft Pd(II) metal center, 1,37-41 and similar arguments can be invoked here to explain this similar selectivity of the soft Pt(II) center. 37,39 In our experience, in all complexes of PdII and PtII containing the neutral orthometallated ligand [C₆H₄-2-PPh₂C(H)COCH₂PPh₃], the coordination of an incoming phosphine ligand always occurs at the trans position to the ylidic carbon. It has been recently reported that the mutual destabilizing effect of trans ligands increases with their trans influence.⁴¹ According to this effect, and taking into account that the trans influence of the aryl group is higher than that of the phosphine ligand ($Ar > PR_3$), the decreasing order of destabilizing effects should be $Ar/Ar > Ar/PR_3 > PR_3/PR_3$.⁴¹ This effect has been called transphobia. 41,42

We can now propose the inclusion of a new member in this sequence, according to our experimental data. Since it seems that the trans influence decreases in the order ${\rm Ar} > {\rm C_{ylide}} > {\rm PR_3}$, the latter sequence of destabilizing effects could be extended as follows: ${\rm Ar}/{\rm Ar} > {\rm Ar}/{\rm C_{ylide}} > {\rm Ar}/{\rm PR_3} > {\rm C_{ylide}}/{\rm PR_3} > {\rm PR_3}/{\rm PR_3}$, though we do not yet have experimental evidence to include in a precise position the term ${\rm C_{ylide}}/{\rm C_{ylide}}$. The trends described here have found wide support in the experimental work.

Nevertheless, we are aware of the existence of exceptions to this rule, some of which have been reported by us⁴ and by other authors, ²⁵ but, in general, the *transphobia* rule gives accurate predictions. It is clear that antisymbiosis and the trans influence are not the sole parameters governing the final stereochemistry of a given complex. For instance, subtle variations in the ligands can alter dramatically the predicted stereochemistry, as in the case of $[Pd(Cl)\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}(PPh_3)](ClO_4)$ (1 isomer)³ and $[Pd(Cl)\{C_6H_4-2-PPh_2C(H)COCH=PPh_3\}(PPh_3)]$ (2 isomers),⁴ for which the only difference is the presence of a phosphonium fragment or an ylide group, respectively, or in the case of the complex $[PdCl\{\kappa^2-C_6H_3[PTo_2-CH(Py-2')-2]Me-4\}(PEt_3)]$,²⁵ which is obtained as a mixture of two isomers $(PEt_3 \ trans \ C_{aryl} \ and \ PEt_3 \ trans \ C_{ylide})$.

On the other hand, the solvate $[Pt\{C_6H_4-2 PPh_2C(H)COCH_2PPh_3$ { $(NCMe)_2$] $(ClO_4)_2$, 4, can obtained, as a white solid, by reaction of the mixture 2a-d with AgClO₄ (1:2 molar ratio) in NCMe at room temperature, filtration of the precipitated AgCl, evaporation of the solvent to dryness and treatment of the oily residue with *n*-hexane. The elemental analysis and mass spectrum of 4 are in good agreement with the proposed stoichiometry. The presence of two NCMe ligands can be inferred from the IR spectrum (absorptions at 2322 cm⁻¹), which also shows the $\nu(CO)$ band at 1670 cm⁻¹. The ¹H NMR spectrum shows the presence of resonances attributed to two nitrile ligands (two singlets at 2.46 and 2.41 ppm), to the ylidic CH proton (a doublet at 5.33 ppm) and to the methylene protons. The last resonance appears as a doublet (instead of a well-resolved AB spin system), probably due to isochrony of the two protons, which transforms the AB spin system into an A2 system. 43 This deceptively simple A₂ spin system is coupled with the ³¹P nucleus with the same coupling constant (${}^{2}J_{P-H} = 12.3$ Hz). The ³¹P{¹H} NMR spectrum shows, as expected, an AX spin system (30.03 and 21.06 ppm).

The chlorine ligands in **2** can be substituted by the acac ligand (acac = acetylacetonate) by reaction of **2** with Tl(acac) (1:2 molar ratio, CH_2Cl_2 , r.t.). After removal of the TlCl and solvent evaporation, the complex [Pt{ $C_6\text{H}_4$ -2-PPh $_2C(H)\text{COCH}_2\text{PPh}_3$ }(acac)](ClO₄), **5**, (see Scheme 1) was

obtained, according to its elemental analysis and mass spectrum. The spectroscopic data of 5 are also in keeping with the proposed stoichiometry. The IR spectrum shows absorptions attributed to the carbonyl stretch of the ylide (1656 cm⁻¹) and to the acac ligand (1558 and 1520 cm⁻¹). The ¹H NMR shows the expected resonances for the CH (acac) proton (5.24 ppm), the CH₂P protons (5.25 ppm), the CH (ylide) proton (4.71 ppm) and the methyl (acac) protons (1.89 and 1.58 ppm). Once again, the ³¹P{¹H} NMR spectrum shows an AX spin system (30.36 and 21.12 ppm).

Finally, dicationic complexes of stoichiometry $[Pt\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}(L-L)](ClO_4)_2$ (L-L = dppe 6, phen 7) can be obtained by reaction of 2 with AgClO₄ (1:2 molar ratio, THF, r.t) (see Scheme 1), filtration of the AgCl, and subsequent addition of the L-L ligands (molar ratio 2: L-L = 1:2) to the resulting solution of the solvated species $[Pt\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}(THF)_x](ClO_4)_2$. The analytical and spectroscopic data of 6 and 7 are in good agreement with the proposed stoichiometry. The IR spectra show absorptions attributed to the carbonyl stretch of the ylide, which in both cases appears at 1657 cm⁻¹. The ¹H NMR spectra shows the expected resonances for the dppe or the phen groups in an asymmetric environment (inequivalence of the two halves of each ligand). In addition, the ¹H NMR spectrum of 6 shows the CH (ylide) as a triplet (5.36 ppm,

 $^2J_{\text{P-H}} = ^3J_{\text{Ptrans-H}} = 6.3 \text{ Hz}$) with ^{195}Pt satellites ($^2J_{\text{Pt-H}} = 80 \text{ Hz}$) and the diastereotopic CH $_2$ P protons (4.29 and 3.78 ppm) as the AB part of an ABX spin system. The $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of 6 shows the presence of four resonances corresponding to the four chemically inequivalent P atoms of the molecule. For complex 7, the CH (ylide) proton appears at 5.80 ppm and the CH $_2$ P protons at 5.47 and 5.15 ppm. As expected, the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of 7 shows an AX spin system (26.55 and 20.79 ppm).

Deprotonation of complexes 3-7

Owing to the presence of the phosphonium group $-C(O)CH_2PPh_3$ in complexes 3–7, we have attempted the deprotonation of these compounds with a variety of bases in order to obtain neutral or monocationic derivatives containing the free ylide unit $-C(O)C(H)=PPh_3$, in a similar way to that described for Pd complexes.⁴ However, the reactivity of 3–7 with bases such as NBu₄OH, which have given excellent results in Pd complexes,⁴ did not give clean reactions in this case and complex mixtures were obtained. The same results were observed in the reaction of 3 with NaH, and the reaction of 4 or 5 with NaH was not attempted.

The reactivity of 6 with NaH was more successful. Thus, the treatment of a THF suspension of 6 with an excess of NaH affords the monocationic derivative $[Pt]C_6H_4$ -2- $PPh_2C(H)COCH=PPh_3\{(dppe)\}(ClO_4)$, 8, (see Scheme 2) according to its elemental analysis and mass spectrum (see Experimental). The IR spectrum of 8 shows the carbonyl absorption at 1529 cm⁻¹, that is, shifted 128 cm⁻¹ to lower energies with respect to the starting compound 6 and in good agreement with the presence of the free ylide unit -C(O)C(H)=PPh₂. The NMR spectra provide further characterization. The ¹H NMR spectrum shows, in addition to the aromatic resonances and those expected for the methylene protons of the dppe ligand, a triplet centered at 4.15 ppm (attributed to the Pt-CH proton) and a new doublet at 3.09 ppm (relative intensity 1:1). This last resonance showing a value of the coupling constant ${}^2J_{\text{P-H}}$ of 25.2 Hz, very similar to those observed for the free ylides, and which is attributed to the ylidic proton of the "free ylide" group. The ³¹P{¹H} NMR is also in good agreement with the proposed stoichiometry, since the resonance at 21.13 ppm in the starting product 6 is not observed and a new resonance at 13.60 ppm appears, corresponding to the free ylide phosphorus.

The synthesis of complex $[Pt\{C_6H_4-2-PPh_2C(H)-COCH=PPh_3\}(PPh_3)_2](ClO_4)$, 9, (see Scheme 2) is not as straightforward as that described for complex 8. The reaction of the bis-acetonitrile complex 4 with an excess of PPh_3 should result in the replacement of the two NCMe ligands by two PPh_3 groups or, at least, in the exchange of one NCMe by one PPh_3, giving the complex $[Pt\{C_6H_4-2-PPh_2C(H)-PPh_3, PPh_3](PPh_3)$

 $PPh_2C(H)COCH_2PPh_3(PPh_3)(NCMe)(ClO_4)_2$, by analogy to the observed behavior in Pd(II) complexes.3 Thus, although bis-phosphine derivative $\Gamma Pd\{C_6H_4-2-$ PPh₂C(H)COCH₂PPh₃}(PPh₃)₂](ClO₄)₂ could not be obtained. the complex $Pd\{C_6H_4-2-$ PPh₂C(H)COCH₂PPh₃\(PPh₃\)(NCMe)](ClO₄)₂, containing one PPh3 group, was synthesized in high yield and characterized crystallographically.3 However, by reaction of 4 with PPh₃ in different molar ratios, we have not been able to obtain a compound with a defined stoichiometry by simple exchange of ligands.

Nevertheless, we have attempted the deprotonation of 4 in the presence of PPh₃. Thus, a suspension of 4 in THF was treated with an excess of PPh3, resulting in the gradual dissolution of the starting compound. This solution was then allowed to react with NaH, and the subsequent workup (see Experimental) gives the desired deprotonated compound $[Pt{C_6H_4-2-PPh_2C(H)COCH2PPh_3}(PPh_3)_2](ClO_4),$ although in moderate yield (58%). This behavior is somewhat related to that observed in the palladium complexes. $[Pd\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}$ although Thus. (PPh₃)₂](ClO₄)₂ could not be³ synthesized, its deprotonated $[Pd\{C_6H_4-2-PPh_2C(H)COCH=PPh_3\}(PPh_3)_2](ClO_4)$ can be obtained and it is stable, both in the solid state and in solution.5

The elemental analysis and mass spectrum of 9 are in good agreement with the proposed stoichiometry. The IR spectrum shows the carbonyl stretch at 1531 cm $^{-1}$, in the same region as that observed for 8. The $^1\mathrm{H}$ NMR spectrum shows the presence of a very complex multiplet with $^{195}\mathrm{Pt}$ satellites at 3.62 ppm, attributed to the ylidic Pt–C(H) proton and a doublet at 3.89 ppm, with a value of the coupling constant $^2J_{\mathrm{P-H}}$ of 26.1 Hz. Both facts are in keeping with the presence of the free ylide group –C(O)–C(H)=PPh3. The $^{31}\mathrm{P}\{^{1}\mathrm{H}\}$ NMR spectrum shows the presence of four chemically inequivalent P atoms, as expected for the proposed stoichiometry and showing that two PPh3 ligands have replaced two NCMe groups. Moreover, the resonance located at 14.37 ppm provides additional evidence for the presence of the free ylide group –C(O)–C(H)=PPh3.

Synthesis of heterobimetallic complexes

We have also attempted the synthesis of bimetallic derivatives through two different methods. The first one is the reaction of the phosphonium-containing complexes 3–7 with (acac)AuPPh₃ (a method that had proved to be very efficient in palladium complexes)⁴ and the second one is the reaction of the ylide complexes 8 and 9 with ClAu(tht). To our surprise, the reactivity of 3–7 with (acac)AuPPh₃ did not give the expected results, and very complex mixtures of products were obtained.

The reactivity of **8** and **9** with ClAu(tht) (1:1 molar ratio) was more succesful, and the heterodinuclear complexes $[Pt\{C_6H_4\text{-}2\text{-}PPh_2C(H)COCH(AuCl)PPh_3\}(dppe)](ClO_4), 10,$ and $[Pt\{C_6H_4\text{-}2\text{-}PPh_2C(H)COCH(AuCl)PPh_3\}(PPh_3)_2]$ -(ClO_4), 11, were obtained (see Scheme 2). These complexes show correct elemental analyses and mass spectra for the proposed stoichiometries.

The IR spectra of 10 and 11 show the carbonyl stretch at 1621 (10) and at 1631 cm⁻¹ (11), that is, shifted to higher energies when compared with the respective starting compounds 8 and 9, and slightly shifted to lower energies when compared with the parent phosphonium derivatives 6 and 4, respectively (although in the case of 4 this is not rigorous, since they do not have the same ancillary ligands). Thus, we have the sequence $\nu(CO, \text{ phosphonium}) > \nu(CO, \text{ C-bonded})$ ylide) $> \nu(CO, \text{ free ylide})$. This trend has already been observed in similar situations.^{6,44} The presence of the [Au–Cl] fragment can be clearly inferred from the observation

in the IR spectra of the v(Au-Cl) stretch at 340 (10) and at 329 cm⁻¹ (11), the typical region for the Cl trans to C(ylide).⁶ The ¹H and ³¹P{¹H} NMR spectra of 10 and 11 show the expected changes for the new stereochemistry. The resonances at 13.60 (8) or 14.37 ppm (9) in ³¹P have moved to 25.49 (10) and 27.12 ppm (11), respectively, suggesting the C-bonding to the [AuCl] fragment. Moreover, and this fact was somewhat expected, complexes 10 and 11 have been obtained as single diastereoisomers, in spite of the presence of two chiral centers (one ylidic carbon C-bonded to platinum and one ylidic carbon C-bonded to gold). In fact, only one set of signals is observed in the NMR spectra (within the detection limits of the spectrometer), suggesting the presence of only one diastereoisomer. This behavior has already been observed in the bis-ylide complexes with $Ph_3P=C(H)-$ C(O)-C(H)=PPh₃, in palladium complexes with the same bisylide², and in heterodinuclear PdAu and trinuclear Pd₂Hg complexes with the C,C,C-terdentate orthometallated ligand C_6H_4 -2-PPh₂C(H)COCH(ML_n)PPh₃.⁴ According to these precedents, we can propose that the absolute configurations of the diastereoisomers obtained in 10 and 11 are the meso forms $(R_{\text{C-Pd}}S_{\text{C-Au}}/S_{\text{C-Pd}}R_{\text{C-Au}}).$

Conclusions

In conclusion, the reactivity of $PtCl_2$ or $PtCl_2(NCR)_2$ with the phosphonium ylide $[Ph_3P=C(H)COCH_2PPh_3]^+$ allows the synthesis of two types of derivatives: the C-bonded complex (1) and new cycloplatinated compounds derived from C-H bond activation (2a-d). The reactivity of 2a-d produces cationic complexes containing the orthometallated C,C-chelating ligand $[C_6H_4-2-PPh_2C(H)COCH_2PPh_3]$ (3-7) which, in turn, can be deprotonated to give Pt^{II} derivatives with the anionic ligand $[C_6H_4-2-PPh_2C(H)COCH=PPh_3]^-$ (8, 9). The latter are adequate starting materials for the synthesis of bimetallic species (10, 11) with the C,C,C-terdentate ligand $[C_6H_4-2-PPh_2C(H)COCHPPh_3]^-$.

Experimental

Caution! Perchlorate salts of metal complexes with organic ligands are potentially explosive. Only small amounts of these materials should be prepared and they should be handled with great caution. See ref. 45.

General procedures

Solvents were dried and distilled under nitrogen before use: diethyl ether and tetrahydrofuran over benzophenone ketyl, dichloromethane and chloroform over P₂O₅, acetonitrile over CaH₂, methanol over magnesium and n-hexane and toluene over sodium. Elemental analyses were carried out on a Perkin-Elmer 240-B microanalyser. Infrared spectra (4000-200 cm⁻¹) were recorded on a Perkin-Elmer 883 infrared spectrophotometer from nujol mulls between polyethylene sheets. ¹H (300.13 MHz), ¹³C{¹H} (75.47 MHz) and ³¹P(¹H} (121.49 MHz) NMR spectra were recorded in CDCl₃ or CD₂Cl₂ solutions at room temperature (unless otherwise stated) on a Bruker ARX-300 spectrometer; ¹H and ¹³C{¹H} were referenced using the solvent signal as internal standard and $^{31}P\{^{1}H\}$ was externally referenced to $H_{3}PO_{4}$ (85%). Mass spectra (positive ion FAB) were recorded on a VG Autospec spectrometer from CH₂Cl₂ solutions. The starting compound [Ph₃P=C(H)C(O)CH₂PPh₃](ClO₄) was prepared according to published methods.⁶

Syntheses

trans-[PtCl₂(NCPh){C(H)PPh₃-C(O)CH₂PPh₃}](ClO₄), 1. To a solution of PtCl₂(PhCN)₂ (0.690 g, 1.47 mmol) in 30 mL of CHCl₃, the phosphonium ylide salt [Ph₃PC(H)COCH₂PPh₃](ClO₄) (1.00 g, 1.47 mmol) was added and the resulting solution was refluxed for 5 h. After the reaction time, the solvent was evaporated to dryness and the residue was treated with $\rm Et_2O$ (20 mL), giving 1 as a pale yellow solid, which was filtered and air dried. Obtained: 1.40 g (91% yield).

Anal. calcd. for $C_{46}H_{38}Cl_3NO_5P_2Pt$: C, 52.71; H, 3.65; N, 1.33. Found: C, 52.80; H, 3.61; N, 1.35. IR (cm⁻¹): 1654 (ν_{CO}), 309 (ν_{Pt-Cl}). FAB-MS [m/z, (%)]: 949 (17%) [M — ClO₄]⁺ ¹H NMR (CD₂Cl₂): δ 8.00–7.25 (m, 35H, Ph), 6.22 (s, 1H, CHPt, $^2J_{Pt-H}$ = 117 Hz), 5.83 (dd, 1H, CH₂P, $^2J_{H-H}$ = 18.3 Hz, $^2J_{P-H}$ = 11.1 Hz), 5.69 (dd, 1H, CH₂P, $^2J_{P-H}$ = 12.3 Hz). $^{31}P\{^1H\}$ NMR (CD₂Cl₂): δ 22.99 d, C(H)PPh₃, $^4J_{P-P}$ = 10 Hz, $^2J_{Pt-P}$ = 76 Hz), 18.89 (d, CH₂PPh₃). $^{13}C\{^1H\}$ NMR (CD₂Cl₂): δ 197.43 (d, CO, $^2J_{P-C}$ = 3.69 Hz), 134.45 (d, J_{P-C} = 10.6 Hz), 134.02 (s), 134.00 (d, J_{P-C} = 2.4 Hz), 133.87 (s), 130.48 (d, J_{P-C} = 13.1 Hz), 129.75 (d, J_{P-C} = 12.5 Hz), 129.31 (s), 121.69 (d, C_{ipso} , $^1J_{P-C}$ = 86 Hz), 118.76 (d, C_{ipso} , $^1J_{C-P}$ = 89 Hz) (PPh₃), 114.99 (s, C=N), 110.72 (s, C_{ipso} , NCPh), 39.28 (dd, CH₂P, $^1J_{P-C}$ = 58.9 Hz, $^3J_{P-C}$ = 12.1 Hz), 21.52 (dd, CHPt, $^1J_{P-C}$ = 48.2 Hz, $^3J_{P-C}$ = 8 Hz).

 $[Pt(\mu-Cl)\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}]_2(ClO_4)_2$,

2a–d. Method (a). Finely ground $PtCl_2$ (0.090 g, 0.36 mmol) was suspended in 50 mL of CH_2Cl_2 . To this suspension $[Ph_3P=C(H)COCH_2PPh_3](ClO_4)$ (0.500 g, 0.73 mmol) was added and this mixture was stirred at room temperature for 4 days. The resulting brown suspension was filtered, the filtrate evaporated to dryness and the residue treated with Pr^iOH (25 mL), giving a mixture of the syn (2a, 2b) and anti (2c, 2d) complexes as a cream solid, which was filtered, washed with additional Pr^iOH (10 mL) and n-hexane (20 mL). Obtained: 0.27 g (82% yield). The molar ratios 2a : 2b : 2c : 2d may be different in different preparations, but the anti derivatives always appear as traces. Usually the molar ratio of the syn isomers is major: minor = 2 : 1.

Method (b) To a solution of PtCl₂(NCMe)₂ (1.00 g, 2.64 mmol) in 25 mL of 2-methoxyethanol, [Ph₃P=C(H)-COCH₂PPh₃](ClO₄) (1.79 g, 2.64 mmol) was added and the resulting suspension was refluxed. After a short induction period, the initial suspension dissolved almost completely and the color of the solution changed gradually to off-white (30 min). An off-white solid precipitated during the remaining reaction time (5 h). This solid was filtered, washed with PriOH (10 mL) and n-hexane (15 mL), air dried and identified as a mixture of the syn (2a) and the anti (2c, 2d) isomers (molar ratio anti: syn = 2.77:1; anti isomers: molar major: minor = 1.37:1). Obtained: 1.39 g (58.5% Further evaporation of the alcoholic solution to a small volume (5 mL) and addition of PriOH (15 mL) yielded a second crop of 2c, 2d (0.400 g, 16.7% yield). Total yield: 75.2%.

Anal. calcd. for $C_{78}H_{64}Cl_4O_{10}P_4Pt_2$: C, 51.55; H, 3.55. Found: C, 51.73; H, 3.98. IR (cm⁻¹): 1652 (v_{CO}), 283 (v_{Pt-Cl}). FAB-MS [m/z, (%)]: 1717 (40%) [M_2 – ClO₄]⁺ ¹H NMR (CD₂Cl₂): δ for the syn isomers, 7.67–6.70 (m, Ph, both isomers), 5.81 (dd, CH₂P, **2b**, minor, $^2J_{H-H}$ = 16.2 Hz, $^2J_{P-H}$ = 12.6 Hz), 5.33 (d, CH_{ylide}, **2a**, major, $^2J_{P-H}$ = 3.9 Hz), 5.12 (dd, CH₂P, **2a**, major, $^2J_{H-H}$ = 15.6 Hz, $^2J_{P-H}$ = 12.9 Hz), 4.91 (dd, CH₂P, **2b**, minor, 1H, $^2J_{P-H}$ = 13.8 Hz), 4.90 (dd, CH₂P, **2a**, major, $^2J_{P-H}$ = 13.8 Hz), 4.47 (d, CH_{ylide}, **2b**, minor, $^2J_{P-H}$ = 2.7 Hz). δ for the anti isomers, 7.86–7.09 (m, Ph, both isomers), 5.26 (dd, CH₂P, **2c**, major, $^2J_{H-H}$ = 19.2 Hz, $^2J_{P-H}$ = 11.4 Hz), 5.16 (dd, CH₂P, **2c**, major, $^2J_{P-H}$ = 10.2 Hz), 4.89 (dd, CH₂P, **2d**, minor, $^2J_{H-H}$ = 17.7 Hz, $^2J_{P-H}$ = 14.1 Hz), 4.68 (dd, CH₂P, **2d**, minor, $^2J_{P-H}$ = 14.10 Hz), 4.69 (d, CH_{ylide}, **2c**, major, $^2J_{P-H}$ = 1.5 Hz), 4.61 (t, CH_{ylide}, **2d**, minor, $^2J_{P-H}$ = 4.5 Hz), 4.61 (t, CH_{ylide}, **2d**, minor, $^2J_{P-H}$ = 4.5 Hz), 4.61 (t, CH_{ylide}, **2d**, minor, $^2J_{P-H}$ = 4.5 Hz), 4.61 (t, CH_{ylide}, **2d**, minor, $^2J_{P-H}$ = 4.5 Hz), 4.61 (t, CH_{ylide}, **2d**, minor, $^2J_{P-H}$ = 4.7 Hz). 31P {¹H} NMR (CD₂Cl₂): δ for the syn isomers, 25.89 (d, PPh₂ in ring, **2b**, minor, $^4J_{P-P}$ = 5.5 Hz), 24.88 (d, PPh₂ in ring, **2a**, major, $^4J_{P-P}$ = 4.6 Hz), 20.18 (d, CH₂PPh₃, **2b**, minor), 20.14 (d, CH₂PPh₃, **2a** major). δ for the anti isomers, 32.10 (d, PPh₂ in ring, **2d**, minor, $^4J_{P-P}$ = 7.9 Hz), 30.59 (d,

PPh₂ in ring, **2c**, major, ${}^4J_{\text{P-P}} = 7.9$ Hz), 22.96 (d, CH₂PPh₃) 22.91 (d, CH₂PPh₃). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂): δ for the *syn* isomers, 188.26 (dd, CO, **2a**, major, ${}^2J_{\text{P-C}} = 4.8$ Hz, ${}^2J_{\text{P-C}} = 1.8$ Hz), 186.26 (d, CO, **2b**, minor, ${}^2J_{\text{P-C}} = 6.1$ Hz), 144.81 (d, C₁, C₆H₄, **2b**, minor, ${}^2J_{\text{P-C}} = 22.5$ Hz), 141.93 (d, C₁, C₆H₄, **2a**, major, ${}^2J_{\text{P-C}} = 21.3$ Hz), 136.77–117.02 (m, Ph + C₆H₄, both isomers), 39.88 (d, CH₂P, **2b**, minor, ${}^1J_{\text{P-C}} = 64$ Hz), 36.77 (dd, CH₂P, **2a**, major, ${}^1J_{\text{P-C}} = 48$ Hz, ${}^3J_{\text{P-C}} = 12.1$ Hz), 35.32 (d, CHPt, **2b**, minor, ${}^1J_{\text{P-C}} = 59.5$ Hz), 35.25 (d, CHPt, **2a**, major, ${}^1J_{\text{P-C}} = 62$ Hz). The *anti* isomers were too insoluble for ${}^{13}\text{C}$ measurements, even in CD₂Cl₂.

[PtCl{C₆H₄-2-PPh₂C(H)COCH₂PPh₃}PPh₃](ClO₄), 3. To a solution of 2 (0.25 g, 0.13 mmol) in CH₂Cl₂ (20 mL) was added PPh₃ (0.07 g, 0.27 mmol) and the resulting solution was stirred at room temperature for 5 h. The solution was evaporated to dryness and the residue was stirred with MeOH (10 mL), giving 3 as a white solid that was filtered and air dried. Obtained: 0.11 g (36% yield). A second fraction of pure 3 was obtained after evaporation of the filtrate and Et₂O addition (25 mL). Obtained: 0.07 g. Total yield of 3: 58%.

Anal. calcd. for $C_{57}H_{47}Cl_2O_5P_3Pt$: C, 58.47; H, 4.04. Found: C, 58.57; H, 3.94, IR (cm⁻¹): 1643 (ν_{CO}), 283 (ν_{Pt-Cl}). FAB-MS [m/z, (%)]: 1071 (27%) [M – ClO_4]⁺. ¹H NMR (CDCl₃): δ 8.00–7.00 (m, 44 H, Ph), 5.73 (dd, 1H, CH_2P , $^2J_{H-H}$ = 17.1 Hz, $^2J_{P-H}$ = 10.8 Hz), 4.95 (dd, 1H, CH_2P , $^2J_{P-H}$ = 13.5 Hz), 4.84 (ddd, 1H, PtCH, $^2J_{P-H}$ = 8.7 Hz, $^3J_{P-H}$ = 3.6 Hz, $^4J_{P-H}$ = 2.1 Hz). $^{31}P\{^1H\}$ NMR (CDCl₃): δ 24.10 (d, 1P, Pt–PPh₃, $^3J_{P-P}$ = 18.8 Hz, $^1J_{P-Pt}$ = 3623 Hz), 21.90 (dd, 1P, PPh₂ in ring, $^4J_{P-P}$ = 7.28 Hz), 20.17 (d, CH_2PPh_3).

[Pt{C₆H₄-2-PPh₂C(H)COCH₂PPh₃}(NCCH₃)₂]-

(ClO₄)₂, 4. To a solution of 2 (0.25 g, 0.13 mmol) in NCMe at room temperature (20 mL) AgClO₄ (0.057 g, 0.27 mmol) was added, resulting in the immediate precipitation of AgCl. The resulting suspension was stirred for 1 h with exclusion of light, then filtered, and the filtrate was evaporated to dryness. The white residue was treated with *n*-hexane (10 mL), giving 4 as a white solid that was filtered, washed with *n*-hexane (10 mL) and air dried. Obtained: 0.22 g (77.60% yield).

Anal. calcd. for $C_{43}H_{38}Cl_2N_2O_9P_2Pt$: C, 48.96; H, 3.63; N, 2.65. Found: C, 49.60; H, 3.52; N, 2.27. IR (cm⁻¹): 2322 (ν_{CN}), 1670 (ν_{CO}). FAB-MS [m/z, (%)]: 872 (100%) [M – 2 NCMe – ClO_4]⁺. ¹H NMR (CDCl₃): δ 8.00–7.00 (m, 29 H, Ph), 5.33 (d, CHPt, 1H, $^2J_{P-H}$ = 1.2 Hz), 5.13 (d, CH₂P, 2H, $^2J_{P-H}$ = 12.3 Hz), 2.46 (s, 3H, NCMe), 2.41 (s, 3H, NCMe). ³¹P{¹H} NMR (CDCl₃): δ 30.03 (d, PPh_2 in ring, $^4J_{P-P}$ = 8 Hz), 21.06 (d, CH_2PPh_3).

 $[Pt\{C_6H_4-2-PPh_2C(H)COCH_2PPh_3\}(acac-O,O')](ClO_4)$

5. To a CH_2Cl_2 solution (20 mL) of 2 (0.25 g, 0.13 mmol) Tl(acac) (0.08 g, 0.27 mmol) was added. The resulting suspension was stirred at room temperature for 5 h, then filtered. The solvent was evaporated from the filtrate to dryness and the residue was treated with n-hexane (20 mL), giving 5 as a white solid, which was filtered, washed with n-hexane and air dried. Obtained: 0.16 g (60.2% yield).

Anal. calcd. for $C_{44}H_{39}ClO_7P_2Pt$: C, 54.20; H, 4.03. Found: C, 54.26; H, 4.46. IR (cm $^{-1}$): 1656 (v_{CO} , ylide), 1558, 1520 (v_{CO} , acac). FAB-MS [m/z, (%)]: 872 (13%) [M - ClO $_4$] $^{-}$. ¹H NMR (CDCl $_3$): δ 8.04-6.66 (m, 29 H, Ph), 5.24 (s, 1H, CH-acac), 5.25 (br AB spin system, CH $_2$ P, 2H, $^2J_{H-H}=13.8$ Hz), 4.71 (s, 1H, CHPt), 1.89 (s, 3H, CH $_3$ -acac), 1.58 (s, 3H, CH $_3$ -acac). $^{31}P\{^1H\}$ NMR (CDCl $_3$): δ 30.36 (d, 1P, PPh $_2$ in ring, $^4J_{P-P}=7.7$ Hz), 21.12 (d, CH $_2$ PPh $_3$).

[Pt{ C_6H_4 -2-PPh₂C(H)COCH₂PPh₃}(dppe)](ClO₄)₂, 6. To a THF solution (30 mL) of 2 (0.25 g, 0.13 mmol) AgClO₄ (0.05 g, 0.27 mmol) was added. The resulting suspension was stirred at room temperature with exclusion of light for 30 min, then

filtered. Dppe (0.10 g, 0.27 mmol) was added to the filtrate and this solution was stirred for 1 h. Evaporation of the solvent and *n*-hexane addition (20 mL) gave **6** as a white solid, which was filtered and air dried. Obtained: 0.22 g (61% yield). Complex **6** was recrystallized from a CH_2Cl_2 - Et_2O (1:10) mixture to gave **6** · 0.25 CH_2Cl_2 as white crystals, which were used for analytical and spectroscopic purposes. The amount of CH_2Cl_2 was determined by ¹H NMR.

Anal. calcd. for $C_{65}H_{56}Cl_2O_9P_4Pt \cdot 0.25 CH_2Cl_2 : C, 56.13;$ H, 4.04. Found: C, 55.47; H, 3.52. IR (cm⁻¹): 1657 (ν_{CO}). FAB-MS [m/z, (%)]: 1271 (8%) [M – ClO_4]⁺. ¹H NMR (CDCl₃): δ 7.94–6.75 (m, 49 H, Ph), 5.36 (t, CHPt, 1H, $^2J_{P-H} = ^3J_{Ptrans-H} = 6.30$ Hz, $^2J_{Pt-H} = 80$ Hz), 4.29 (dd, CH_2P , 1H, $^2J_{P-H} = 16.5$ Hz, $^2J_{P-H} = 9.90$ Hz), 3.78 (dd, CH_2P , 1H, $^2J_{P-H} = 12$ Hz), 2.88–1.80 (m, 4 H, CH_2 -dppe). ³¹P{¹H} NMR (CDCl₃): δ 46.61 (d, 1P, PPh₂-trans- C_{ylide} , ³ $J_{P-P} = 17.6$ Hz, ¹ $J_{P-Pt} = 3050$ Hz), 43.46 (d, 1P, PPh₂-trans- C_{aryl} , ³ $J_{P-P} = 32.9$ Hz, ¹ $J_{P-Pt} = 1786$ Hz), 28.73 (ddd, 1P, PPh₂ in ring, ⁴ $J_{P-P} = 8.5$ Hz), 21.13 (d, 1P, CH_2PPh_3). ¹³C{¹H} NMR (CDCl₃): δ 194.57 (dd, CO, ² $J_{P-C} = 10.56$ Hz, ² $J_{P-C} = 5.1$ Hz), 165.62 (ddd, C_1 , C_6H_4 , ² $J_{Ptrans-C} = 109.6$ Hz, ² $J_{Pcis-C} = 28.8$ Hz, ² $J_{P-C} = 5.9$ Hz), 135–128 (m, Ph + C_6H_4), 44.82 (td, CH_{ylide} , ¹ $J_{P-C} = ^2J_{Ptrans-C} = 75.9$ Hz, ² $J_{Pcis-C} = 7.6$ Hz), 38.81 (dd, CH_2P , ¹ $J_{P-C} = 60.2$ Hz, ³ $J_{P-C} = 9.7$ Hz), 28.76 (m, CH_2 -dppe).

[Pt{C₆H₄-2-PPh₂C(H)COCH₂PPh₃}(phen)](ClO₄)₂, 7. In a similar way to that described for 6, 2 (0.21 g, 0.11 mmol) reacts with AgClO₄ (0.05 g, 0.23 mmol) and phen (0.04 g, 0.23 mmol) to give 7 as a white solid. Obtained: 0.23 g (85% yield). Complex 7 was recrystallized from a CH₂Cl₂-Et₂O (1:10) mixture, which gave $7 \cdot \text{CH}_2\text{Cl}_2$ as white crystals, which were used for analytical and spectroscopic purposes. The amount of CH₂Cl₂ was determined by ¹H NMR.

Anal. calcd. for $C_{50}H_{40}Cl_2N_2O_9P_2Pt\cdot CH_2Cl_2$: C, 50.46; H, 3.42; N, 2.26. Found: C, 50.61; H, 3.54; N, 2.58. IR (cm⁻¹): 1657 (v_{CO}). FAB-MS [m/z, (%)]: 1053 (13%) [M – ClO₄]⁺, 952 (100%) [M – 2 ClO₄ – H]⁺. ¹H NMR (CDCl₃): δ 10.09 (d, 1H, H_{\alpha}, phen, ³ $J_{\alpha\beta}$ = 4.5 Hz), 9.24 (d, 1H, H_{\alpha'}, phen, ³ $J_{\alpha'\beta'}$ = 5.1 Hz), 8.70 (d, 1H, H_{\gamma'}, phen, ³ $J_{\gamma\beta}$ = 8.4 Hz), 8.56 (d, 1H, H_{\gamma'}, phen, ³ $J_{\gamma'\beta'}$ = 8.4 Hz), 8.15 (dd, 1H, H_{\beta'}, phen), 8.01 (d, 1H, H_{\beta}, phen, ³ $J_{\delta\delta'}$ = 9 Hz), 7.99 (dd, 1H, H_{\beta}, phen), 7.95 (d, 1H, H_{\beta'}), 7.88–7.26 (m, 29 H, Ph), 5.80 (s, 1H, CHPt), 5.47 (dd, 1H, CH₂P, ² J_{P-H} = 18.00 Hz, ² J_{P-H} = 12.30 Hz), 5.15 (dd, 1H, CH₂P, ² J_{P-H} = 12 Hz). ³¹P{¹H} NMR (CDCl₃): δ 26.55 (d, PPh₂ in ring, ⁴ J_{P-P} = 10 Hz), 20.79 (d, CH₂PPh₃).

[Pt{C₆H₄-2-PPh₂C(H)COC(H)2PPh₃}(dppe)](ClO₄), 8. To a suspension of 6 (0.20 g, 0.14 mmol) in THF (20 mL) was added an excess of NaH (0.10 g, 4.16 mmol). This mixture was stirred at room temperature for 10 h. During this time, a slow evolution of gas (H₂) was observed, and the color of the suspension changed gradually from white to yellow. After the reaction time, the suspension was filtered and the solution was evaporated to dryness, extracted with CH₂Cl₂ (20 mL) and filtered again. The resulting solution was evaporated to dryness and the oily residue was treated with Et₂O (15 mL), giving 8 as a yellow solid. Obtained: 0.11 g (63.9% yield). Due to the presence of traces of the bis-oxide $P(O)Ph_2CH_2CH_2P(O)Ph_2$, complex 8 was recrystallized from CH_2Cl_2 -n-hexane to give 8 · 2 CH_2Cl_2 as yellow crystals, which were used for analytical and spectroscopic purposes.

Anal. calcd. for $C_{65}H_{55}ClO_5P_4Pt \cdot 2 CH_2Cl_2$: C, 55.86; H, 4.13. Found: C, 56.16; H, 4.84. IR (cm⁻¹): 1529 (ν_{CO}). FAB-MS [m/z, (%)]: 1170 (85%) [M – ClO₄]⁺. ¹H NMR (CD₂Cl₂): δ 7.91–6.88 (m, 49 H, Ph), 4.15 (t, CHPt, 1H, $^2J_{P-H} = ^3J_{P-H} = ^{7.8}$ Hz, $^2J_{P-H} = ^{69}$ Hz), 3.09 [d, –C(H)=P, 1H, $^2J_{P-H} = 25.2$ Hz], 2.47–1.82 (m, 4 H, CH₂-dppe). $^{31}P\{^1H\}$ NMR (CD₂Cl₂): δ 45.28 (d, 1P, PPh₂-trans C_{ylide} , $^3J_{P-P} = 17.7$ Hz, $^1J_{P-Pt} = 2688$ Hz), 44.41 (d, 1P, PPh₂-trans- C_{aryl} ,

 $^3J_{\text{P-P}} = 36.3$ Hz, $^1J_{\text{P-Pt}} = 1856$ Hz), 30.87 (ddd, 1P, PPh₂ in ring, $^4J_{\text{P-P}} = 7.2$ Hz), 13.60 (d, 1P, CH=PPh₃).

 $[Pt\{C_6H_4-2-PPh_2C(H)COC(H)2PPh_3\}(PPh_3)_2](ClO_4),$

9. To a THF suspension (20 mL) of 4 (0.174 g, 0.16 mmol) was added excess of PPh₃ (0.130 g, 0.49 mmol). The suspension gradually dissolved and to the resulting solution NaH (0.10 g, excess) was added. This mixture was stirred at room temperature overnight and then filtered. The filtrate was evaporated to dryness, extracted with CH₂Cl₂ (15 mL), filtered again and the resulting solution evaporated to dryness to give 9 as a white solid, which was collected with Et₂O (20 mL) and air dried. Obtained: 0.130 g (58% yield).

Anal. calcd. for $C_{75}H_{61}ClO_5P_4Pt$: C, 64.49; H, 4.40. Found: C, 64.86; H, 4.37. IR (cm⁻¹): 1531 (ν_{CO}). FAB-MS [m/z, (%)]: 1297 (10%) [M – ClO₄]⁺, 1035 (100%) [M – ClO₄ – PPh₃]⁺. ¹H NMR (CDCl₃): δ 7.94–6.70 (m, 59 H, Ph + C₆H₄), 3.89 [d, –C(H)=P, 1H, $^2J_{P-H}$ = 26.1 Hz], 3.62 (m, CHPt, 1H, $^2J_{P-H}$ = 64 Hz). $^{31}P\{^1H\}$ NMR (CDCl₃): δ 30.70 (dd, 1P, PPh₂ in ring, $^3J_{P-P}$ = 32.7 Hz, $^3J_{P-P}$ = 17.5 Hz), 26.86 (t, 1P, PPh₃-trans-C_{ylide}, $^3J_{P-P}$ = 2 $^2J_{P-P}$ = 17.5 Hz, $^1J_{P-Pt}$ = 2576 Hz), 22.90 (dd, 1P, PPh₃-trans-C_{aryl}, $^1J_{P-Pt}$ = 1698 Hz), 14.37 (s, 1P, CH=PPh₃).

[Pt{C₆H₄-2-PPh₂C(H)COC(H)(AuCl)PPh₃}(dppe)]-

(ClO₄), 10. To a CH₂Cl₂ solution (15 mL) of complex 8 (0.074 g, 0.058 mmol) ClAu(tht) (0.018 g, 0.058 mmol) was added and the resulting solution was stirred at room temperature for 15 min. Evaporation of the solvent to dryness and treatment of the white residue with Et₂O (10 mL) gave 10 as a white solid. Obtained: 0.059 g (68% yield). Due to a small amount of decomposition products, complex 10 was recrystallized from CH₂Cl₂-n-hexane to give white crystals of 10·2CH₂Cl₂, which were used for analytical and spectroscopic purposes.

Anal. calcd. for $C_{65}H_{55}AuCl_2O_5P_4Pt \cdot 2 CH_2Cl_2$: C, 48.10, H, 3.55. Found: C, 48.04; H, 3.87. IR (cm⁻¹): 1621 (ν_{CO}), 340 ($\nu_{Au\text{-Cl}}$). FAB-MS [m/z, (%)]: 1403 (35%) [M - ClO₄]⁺ 1170 (15%) [M - ClO₄ - AuCl]⁺. ¹H NMR (CDCl₃): δ 7.90-6.64 (m, 49 H, Ph + C_6H_4), 5.18 (td, CHPt, 1H, $^2J_{P\text{-H}} = ^3J_{P\text{-H}} = 8$ Hz, $^3J_{P\text{-H}} = 1.5$ Hz, $^2J_{P\text{-H}} = 55$ Hz), 2.77 (s, br, 1H, CHAu), 2.52–1.99 (m, 4 H, CH₂-dppe). $^{31}P_1^{1}$ NMR (CDCl₃): δ 45.63 (d, 1P, PPh₂-trans- C_{ylide} , $^3J_{P\text{-P}} = 17.9$ Hz, $^1J_{P\text{-Pt}} = 2933$ Hz), 41.02 (d, 1P, PPh₂-trans- C_{aryl} , $^3J_{P\text{-P}} = 30.5$ Hz, $^1J_{P\text{-Pt}} = 1856$ Hz), 27.98 (ddd, 1P, PPh₂ in ring, $^4J_{P\text{-P}} = 13.4$ Hz), 25.49 [d, 1P, CH(AuCl)PPh₃].

 $[Pt\{C_6H_4-2-PPh_2C(H)COC(H)(AuCl)PPh_3\}(PPh_3)_2]-$

(ClO₄), 11. Complex 11 was obtained following the same method as that described for 10: complex 9 (0.108 g, 0.077 mmol) and ClAu(tht) (0.025 g, 0.077 mmol) reacted in CH₂Cl₂ (10 mL) to give 11 as a white solid. Obtained: 0.086 g (69% yield). Complex 11 was recrystallized from CH₂Cl₂-n-hexane, giving white crystals of 11 · 0.5 CH₂Cl₂, which were used for analytical and spectroscopic purposes.

Anal. calcd. for $C_{75}H_{61}AuClO_5P_4Pt\cdot 0.5$ $CH_2Cl_2: C$, 54.25; H, 3.74. Found: C, 54.19; H, 3.86. IR (cm⁻¹): 1631 (ν_{CO}), 329 (ν_{Au-Cl}). FAB-MS [m/z, (%)]: 1529 (5%) [M – ClO_4]⁺, 1267 (20%) [M – ClO_4 – PPh_3]⁺, 1035 (20%) [M – ClO_4 – PPh_3 – AuCl]⁺. ¹H NMR (CDCl₃): δ 7.79–6.47 (m, 59 H, Ph + C_6H_4), 4.55 (t, CHPt, 1H, ³ J_{P-H} = $^2J_{P-H}$ = 9.3 Hz, $^2J_{P-H}$ = 88 Hz), 2.88 (s, br, 1H, CHAu). ³¹P{¹H} NMR (CDCl₃): δ 29.61 (ddd, 1P, PPh₂ in ring, $^3J_{P-P}$ = 32.2 Hz, $^3J_{P-P}$ = 17.7 Hz, $^4J_{P-P}$ = 10 Hz), 27.12 [d, 1P, CH(AuCl)PPh₃], 22.51 (t, 1P, PPh₃-trans- C_{ylide} , $^3J_{P-P}$ = $^2J_{P-P}$ = 17.5 Hz, $^1J_{P-Pt}$ = 2615 Hz), 19.14 (dd, 1P, PPh₃-trans- C_{aryl} , $^1J_{P-Pt}$ = 1644 Hz).

Acknowledgements

Funding by the Dirección General de Enseñanza Superior (Spain, project PB98-1595-C02-01) is gratefully acknowledged,

and we thank Professor J. Forniés for invaluable logistical support.

References

- 1 R. Navarro and E. P. Urriolabeitia, J. Chem. Soc., Dalton Trans., 1999, 4111 and references given therein.
- L. R. Falvello, S. Fernández, R. Navarro, A Rueda and E. P. Urriolabeitia, *Inorg. Chem.*, 1998, 37, 6007.
- 3 L. R. Falvello, S. Fernández, R. Navarro, A. Rueda and E. P. Urriolabeitia, Organometallics, 1998, 17, 5887.
- 4 L. R. Falvello, S. Fernández, R. Navarro and E. P. Urriolabeitia, Inorg. Chem., 1999, 38, 2455.
- 5 S. Fernández, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem., in press.
- 6 J. Vicente, M. T. Chicote, I. Sauras-Llamas, P. G. Jones, K. Meyer-Bäse and C. F. Erdbrüger, Organometallics, 1988, 7, 997.
- 7 G. K. Anderson, in Comprehensive Organometallic Chemistry II, ed. E. W. Abel, F. G. S. Stone and G. Wilkinson, Pergamon Press, Oxford, 1995, vol. 9, pp. 507–518 and references cited therein.
- 8 M. E. van der Boom, H.-B. Kraatz, L. Hassner, Y. Ben-David and D. Milstein, *Organometallics*, 1999, **18**, 3873.
- 9 G. W. V. Cave, N. W. Alcock and J. P. Rourke, *Organometallics*, 1999, 18, 1801 and references therein.
- D. J. Cárdenas, A. M. Echavarren and M. C. Ramírez de Arellano, Organometallics, 1999, 18, 3337.
- K. McGrouther, D. W. Weston, D. Fenby, B. H. Robinson and J. Simpson, J. Chem. Soc., Dalton Trans., 1999, 1957.
- 12 M. Ghedini, D. Pucci, A. Crispini and G. Barberio, Organometallics, 1999, 18, 2116.
- L. Johansson, O. B. Ryan and M. Tilset, J. Am. Chem. Soc., 1999, 121, 1974
- 14 J. M. Longmire, X. Zhang and M. Shang, Organometallics, 1998, 17, 4374.
- G. V. W. Cave, A. J. Hallet, W. Errington and J. Rourke, *Angew. Chem.*, *Int. Ed.*, 1998, 37, 3270.
- 16 M. A. Bennett, T. Dirnberger, D. C. R. Hockless, E. Wenger and A. C. Willis, J. Chem. Soc., Dalton Trans., 1998, 271.
- 17 V. V. Rostovtsev, J. A. Labinger, J. E. Bercaw, T. L. Lasseter and K. I. Goldberg, *Organometallics*, 1998, 17, 4530.
- 18 S.-W. Zhang and S. Takahashi, Organometallics, 1998, 17, 4757.
- A. D. Ryabov, G. M. Kazankov, I. M. Panyashkina, O. V. Grozovsky, O. G. Dyachenko, V. A. Polyakov and L. G. Kuz'mina, J. Chem. Soc., Dalton Trans., 1997, 4385.
- P. Steenwinkel, S. L. James, D. M. Grove, H. Kooijman, A. L. Spek and G. van Koten, *Organometallics*, 1997, 16, 513.
- R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh and H. Fujii, Science, 1998, 280, 560.

- 22 M. L. Illingsworth, J. A. Teagle, J. L. Burmeister, W. C. Fultz and A. L. Rheingold, *Organometallics*, 1983, 2, 1364.
- J. A. Teagle and J. L. Burmeister, *Inorg. Chim. Acta*, 1986, 118, 65.
- 24 J. Vicente, M. T. Chicote and J. Fernández-Baeza, J. Organomet. Chem., 1989, 364, 407.
- 25 J. Vicente, M. T. Chicote, M. C. Lagunas, P. G. Jones and E. Bembenek, *Organometallics*, 1994, 13, 1243.
- 26 G. Facchin, L. Zanotto, R. Bertani and G. Nardin, *Inorg. Chim. Acta*, 1996, **245**, 157.
- 27 U. Belluco, R. A. Michelin, M. Mozzon, R. Bertani, G. Facchin, L. Zanotto and L. Pandolfo, J. Organomet. Chem., 1998, 557, 37 and references cited therein.
- 28 A. J. Deeming, D. Nuel, N. I. Powell and C. Whittaker, J. Chem. Soc., Dalton Trans., 1992, 757.
- D. Heineke, D. Scott-Bohle and H. Vahrenkamp, Chem. Ber., 1993, 126, 355.
- 30 A. Antiñolo, F. Carrillo-Hermosilla, E. Díez-Barra, J. Fernández-Baeza, A. Lara-Sánchez, A. Otero and J. Tejada, J. Organomet. Chem., 1998, 570, 97.
- 31 J. Vicente, M. T. Chicote, J. Fernández-Baeza, F. J. Lahoz and J. A. López, *Inorg. Chem.*, 1991, **30**, 3617.
- 32 J. Vicente, M. T. Chicote, M. C. Lagunas and P. G. Jones, *Inorg. Chem.*, 1995, 34, 5441.
- 33 J. Vicente, M. T. Chicote, M. A. Beswick and M. C. Ramírez de Arellano, *Inorg. Chem.*, 1996, 35, 6592.
- 34 S. Fernández, M. M. García, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem., 1998, 561, 67.
- E. Pretsch, J. Seibl, W. Simon and T. Clerc, Tabellen zur Strukturaufklärung Organischer Verbindungen mit Spektroskopischen Methoden, Springer-Verlag, Berlin, 3rd edn, 1990.
- 36 J. Forniés, A. Martín, R. Navarro, V. Sicilia and P. Villarroya, Organometallics, 1996, 15, 1826.
- 37 R. G. Pearson, Inorg. Chem., 1973, 12, 712.
- 38 M. Pfeffer, D. Grandjean and G. Le Borgne, *Inorg. Chem.*, 1981, 20, 4426.
- 39 J. A. Davies and F. R. Hartley, Chem. Rev., 1981, 81, 79.
- 40 J. Dehand, J. Jordanov, M. Pfeffer and M. Zinsius, C.R. Séances Acad. Sci., Ser. C, 1975, 281, 651.
- 41 J. Vicente, A. Arcas, D. Bautista and P. G. Jones, Organometallics, 1997, 16, 2127.
- 42 J. Vicente, J. A. Abad, A. D. Frankland and M. C. Ramírez de Arellano, *Chem. Eur. J.*, 1999, **5**, 3066.
- 43 R. J. Abraham, The Analysis of High Resolution NMR Spectra, Elsevier Publishing Company, Amsterdam, 1971, pp. 48–53.
- 44 J. Vicente, M. T. Chicote and M. C. Lagunas, *Helv. Chim. Acta*, 1999, 82, 1202.
- 45 W. C. Wolsey, J. Chem. Educ., 1973, 50, A335.